33 research outputs found

    Exact Numerical Processing

    Get PDF
    Paper submitted to Euromicro Symposium on Digital Systems Design (DSD), Belek-Antalya, Turkey, 2003.A model of an exact arithmetic processing is presented. We describe a representation format that gives us a greater expressive capability and covers a wider numerical set. The rational numbers are represented by means of fractional notation and explicit codification of its periodic part. We also give a brief description of exact arithmetic operations on the proposed format. This model constitutes a good alternative for the symbolic arithmetic, in special when numerical exact values are required. As an example, we show an application of the exact numerical processing to calculate the perpendicular vector to another one for aerospace purposes.This work is being backed by grant DPI2002-04434-C04-01 from the Ministerio de Ciencia y Tecnología of the Spanish Government

    Time-Precision Flexible Adder

    Get PDF
    Paper submitted to 10th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Sharjah, Emiratos Árabes, 2003.A new conception of flexible calculation that allows us to adjust a sum depending on the available time computation is presented. More specifically, the objective is to obtain a calculation model that makes the processing time/precision more flexible. The addition method is based on carry-select scheme adder and the proposed design uses precalculated data stored in look-up tables, which provide, above all, quality results and systematization in the implementation of low level primitives that set parameters for the processing time. We report an evaluation of the architecture in area, delay and computation error, as well as a suitable implementation in FPGA to validate the design.This work is being backed by grant DPI2002-04434-C04-01 from the Ministerio de Ciencia y Tecnología of the Spanish Government

    Biblioteca Aritmética de operaciones en Tiempo Real para Números en Coma Flotante

    Get PDF
    Lenguaje de alto nivel utilizado: JavaEl estándar IEEE754 es ampliamente utilizado en representación numérica de números reales y es actualmente seguida por los fabricantes en muchas de las implementaciones de CPU. Este estándar determina una serie de formatos para la representación de números en coma flotante, sus casos especiales y situaciones de error. Muchos lenguajes especifican que formatos y aritmética de la IEEE implementan, por ejemplo, en los lenguajes C/C++ y Java, el tipo float representa números en simple precisión y el tipo double representa números en doble precisión) y definen los operadores aritméticos básicos (suma, resta, producto y división) para operar con estos números. Sin embargo, estos lenguajes de alto nivel no permiten operar a nivel de bit con los números en punto flotante, por lo tanto, no se permite obtener el valor de un bit concreto ni aplicar operadores como el desplazamiento de bits. Esta biblioteca contiene la implementación en alto nivel de la colección de funciones aritméticas que operan con números codificados en el estándar. Su propósito es el de disponer de una base funcional que permita realizar experimentos de análisis de coste y precisión en el uso de los distintas variantes del formato. Asímismo, la biblioteca contiene la implementación de las operaciones básicas con restricciones temporales, es decir, con capacidad de prefijar el momento y precisión del resultado

    Adjustable compression method for still JPEG images

    Get PDF
    There are a large number of image processing applications that work with different performance requirements and available resources. Recent advances in image compression focus on reducing image size and processing time, but offer no real-time solutions for providing time/quality flexibility of the resulting image, such as using them to transmit the image contents of web pages. In this paper we propose a method for encoding still images based on the JPEG standard that allows the compression/decompression time cost and image quality to be adjusted to the needs of each application and to the bandwidth conditions of the network. The real-time control is based on a collection of adjustable parameters relating both to aspects of implementation and to the hardware with which the algorithm is processed. The proposed encoding system is evaluated in terms of compression ratio, processing delay and quality of the compressed image when compared with the standard method

    Calculation Methodology for Flexible Arithmetic Processing

    Get PDF
    Paper submitted to the IFIP International Conference on Very Large Scale Integration (VLSI-SOC), Darmstadt, Germany, 2003.A new operation model of flexible calculation that allows us to adjust the operation delay depending on the available time is presented. The operation method design uses look-up tables and progressive construction of the result. The increase in the operators’ granularity opens up new possibilities in calculation methods and microprocessor design. This methodology, together with the advances in technology, enables the functions of an arithmetic unit to be implemented on the basis of techniques based on stored data that provide quality results and systematization in the implementation. The proposed techniques are applied in the design of a multiplier operator. We report an evaluation of the architecture in area, delay and computation error, as well as a suitable implementation of an application example in FPGA to validate the design.This work is being backed by grant DPI2002-04434-C04-01 from the Ministerio de Ciencia y Tecnología of the Spanish Government

    Time-Precision Flexible Arithmetic Unit

    Get PDF
    Paper submitted to the XVIII Conference on Design of Circuits and Integrated Systems (DCIS), Ciudad Real, España, 2003.A new conception of flexible calculation that allows us to adjust an operation depending on the available time computation is presented. The proposed arithmetic unit is based on this principle. It contains a control operation module that determines the process time of each calculation. The operation method design uses precalculated data stored in look-up tables, which provide, above all, quality results and systematization in the implementation of low level primitives that set parameters for the processing time. We report an evaluation of the architecture in area, delay and computation error, as well as a suitable implementation in FPGA to validate the design.This work is being backed by grant DPI2002-04434-C04-01 from the Ministerio de Ciencia y Tecnología of the Spanish Government

    Computational Analysis of Distance Operators for the Iterative Closest Point Algorithm

    Get PDF
    The Iterative Closest Point (ICP) algorithm is currently one of the most popular methods for rigid registration so that it has become the standard in the Robotics and Computer Vision communities. Many applications take advantage of it to align 2D/3D surfaces due to its popularity and simplicity. Nevertheless, some of its phases present a high computational cost thus rendering impossible some of its applications. In this work, it is proposed an efficient approach for the matching phase of the Iterative Closest Point algorithm. This stage is the main bottleneck of that method so that any efficiency improvement has a great positive impact on the performance of the algorithm. The proposal consists in using low computational cost point-to-point distance metrics instead of classic Euclidean one. The candidates analysed are the Chebyshev and Manhattan distance metrics due to their simpler formulation. The experiments carried out have validated the performance, robustness and quality of the proposal. Different experimental cases and configurations have been set up including a heterogeneous set of 3D figures, several scenarios with partial data and random noise. The results prove that an average speed up of 14% can be obtained while preserving the convergence properties of the algorithm and the quality of the final results

    Convergence analysis and validation of low cost distance metrics for computational cost reduction of the Iterative Closest Point algorithm

    Get PDF
    The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations

    Partial Product Reduction based on Look-Up Tables

    Get PDF
    In this paper a new technique for partial product reduction based on the use of look-up tables for efficient processing is presented. We describe how to construct counter devices with pre-calculated data and their subsequent integration into the whole operation. The development of reduction trees organizations for this kind of devices uses the inherent integration benefits of computer memories and offers an alternative implementation to classic operation methods. Therefore, in our experiments we compare our implementation model with CMOS technology model in homogeneous terms

    Agricultural traceability model based on IoT and Blockchain: Application in industrial hemp production

    Get PDF
    Facilities based on the Internet of Things and embedded systems along with the application of ambient intelligence paradigms offer new scenarios for optimization services in agronomic processes, specifically in the hemp industry. The traceability of products and activities demonstrates the scope of these technologies. However, the technologies themselves introduce integration-related problems that can affect the planned benefits. This article proposes a model that balances agricultural expert knowledge (user-centered design), value chain planning (through blockchain implementation), and digital technology (Internet of Things protocols) for providing tamper proof, transparent, and secure traceability in this agricultural sector. The proposed approach is backed by a proof-of-concept implementation in a realist scenario, using embedded devices and a permissioned blockchain. The model and its deployment fully integrate a set of services that other proposals only partially integrate. On one hand, the design creates a permissioned blockchain that contemplates the different actors in the value chain, and on the other hand, it develops services that use applications with human-machine interfaces. Finally, it deploys a network of embedded devices with Internet of Things protocols and control algorithms with automated access to the blockchain for traceability services. Combining digital systems with interoperable human tasks it has been possible to deploy a model that provides a new approach for the development of value-added services
    corecore